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A fractal lattice F is defined here to comprise all points of the form a + ma' + 
m2a '' + . . .  + m q a  (q), where q is a nonnegative integer and a, a',..., a(ql~A, where 
A is a finite set of points in some Euclidean space. Provided m is not too small 
(in particular, m must be at least 2), the dimension of F is shown to he 
D = log n/log m, where n is the number of points in A. It is shown further that 
an Ising model on F, with a ferromagnetic pair interaction r -= between spins 
separated by a distance r, has a phase transition if D < e < 2D. On the other 
hand, for e > 2D, provided a certain condition which rules out periodic lattices 
is satisfied, there can be no finite-temperature transition leading to spontaneous 
magnetization. 

KEY WORDS:  Phase transitions; fractal lattices; long-range forces; Ising 
ferromagnet. 

1. I N T R O D U C T I O N  

The effect of dimensionality on phase transitions has long been a topic of 
inte, rest in statistical mechanics; indeed, according to the universality 
hypothesis, many of the salient features of the phase transition in a lattice 
system with short-range forces are entirely determined by two parameters: 
the number of dimensions of the local spin variables, and the number of 
dimensions of the lattice itself. The study of this dependence on lattice 
dimensionality was given an added twist by the discovery of Wilson and 
Fisher (I) that in some types of calculation the dimensionality of the lattice 
could be formally treated as a continuous variable capable of nonintegral 
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values, such as 3.99. However (in the physics community, at least) it did 
not become clear until the work of Mandelbrot (2'3) that it was actually 
possible to define objects (which he called fractals) having nonintegral 
dimensionality. 

Recently, Mandelbrot's ideas have stimulated some investigations of 
phase transitions on what may be called fractal lattices. These are infinite 
sets of points (called here sites) in some underlying Euclidean space, 
arranged in such a way that the number of sites within a distance R of any 
given site increases asymptotically in proportion to R D, where D is a con- 
stant called the fractal dimension (or Hausdorff dimension). The fractal 
dimension need not be an integer; examples where it is not, and a general 
method for constructing such lattices, will be discussed in Section 2. Most 
of the studies carried out so far (4 8) have been for Ising models with 
interactions only between nearest neighbor sites (that is, sites that are 
neighbors in the underlying lattice). The results indicate a breakdown of 
simple universality: two Ising models with the same value of D can have 
different critical exponents, or one of them may have a positive-tem- 
perature phase transition, while the other has none. It may be possible to 
restore universality by using some other dimensionlike number--order of 
ramification, or connectivity dimension (4'8'9) perhaps--in place of the frac- 
tal dimension D, but the way to do this is not clear at present. 

It is not really surprising that the fractal dimension D tells us too little 
about the properties of a nearest neighbor fractal Ising model to determine 
its phase transition characteristics. The definition of fractal dimension 
depends on the distribution of pairs of widely separated sites; it says 
nothing about the distribution of pairs of sites that are close together, in 
particular pairs of sites that are nearest neighbors on the underlying lattice. 
It is not even sensitive enough to distinguish an Ising model on (say) a 
cubic lattice from one that uses only alternate sites of such a lattice--yet if 
the interactions are confined to pairs of sites that are nearest neighbors on 
the underlying lattice, the former has a phase transition, while the latter 
has none. 

As a possible indicator of phase transitions, the fractal dimension 
therefore has a better chance of success if we use it not for a nearest 
neighbor model, but for one with long-range interactions. Accordingly, the 
present paper is concerned with an interaction falling off as an inverse 
power of the distance. The system we consider is an Ising ferromagnet in 
which any finite set A of occupied lattice sites has the Hamiltonian 

HA=--  ~ s(x) s(y)lx--  yl -~ (1.1) 
{x,y} = A  

where the sum goes over all unordered pairs {x, y} of different sites in A, 
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s(x) (capable of the values +1 only) is the spin at the site x, I x - y [  is the 
distance between site x and site y, and ~ is a positive constant. Similar 
results also apply to the plane rotator ferromagnet, as we shall see at the 
end of the paper. 

An indication of how the value of c~ may be expected to affect the 
phase transitions of our model can be obtained by considering some per- 
turbations of the totally ordered state defined to have s(x) = +1 for all sites 
x in the infinite fractal lattice. (The following argument is a natural 
generalization of one given for the two-dimensional plane rotator model by 
Kunz and PfisterJ 1~ First, consider the energy required to reverse just one 
spin in this state; this energy may be estimated, using the definition of D, as 
being roughly 

fl  ~ 
const • r ~ d ( r  D) 

In the case c~ ~< D this integral diverges; it takes an infinite energy to reverse 
even one spin and so the system will be totally ordered at all temperatures. 
We therefore expact to find a phase transition only in the other case, c~ > D. 
Second (supposing now that ~ > D ) ,  consider the energy required to 
rew~rse all the spins in a sphere S of radius R (centered on an arbitrary 
site); this energy falls short of the sum of the energies required to reverse 
eaclh one of them separately by an amount  

4 ~ [x-yr  ~ (1.2) 
{x,y} = S 

(In the equivalent lattice gas description of the Ising model this quantity is 
the binding energy of a spherical droplet of radius R.) Since I x - y ]  ~<2R, 
this energy difference is bounded below by 4(2R) -~ times the number of 
pairs of occupied sites in S, that is, by a quantity proportional to R 2/9- ~ 
for large R. So if c~ < 2D there is a lot of energy to be gained by collecting 
spins together in large clusters rather than scattering the same number of 
spins at random over the whole system; hence the spins will tend to 
segregate into large clusters, and we expect to find phase separation at suf- 
ficiently low temperatures. These considerations lead us to expect that the 
infinite system will have a phase transition if c~ lies between D and 2D. A 
proof ,of this is the main result of the present paper. 

The method of proof depends strongly on the work of Dyson, ~11) who 
proved that, if instead of a fractal lattice we use the infinite one-dimen- 
sional lattice Z, then the infinite system with Hamiltonian (1.1) has a phase 
transition for 1 < ~ < 2. The main idea of Dyson's proof was to use the 
inequalities of Griffiths <12'13) to compare this system with another system, 
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which he called the hierarchical model, for which the existence of a low- 
temperature spontaneous  magnet izat ion can be proved if ~ < 2. At the same 
time a different inequality, also due to Griffiths, (t4) enabled Dyson  to show 
that there is no  spontaneous  magnet izat ion at high temperatures if ~ > 1. 
So if 1 < 7 < 2, there is spontaneous  magnet izat ion at low temperatures,  
but  not  at high: a phase transition. The present paper  uses the same ideas: 
we shall find that  a similar compar ison  can be made  in the case of a fractal 
lattice with arbi t rary dimension D, and that  there is, as the a rgument  given 
above suggests, a phase transit ion provided 

D < ~ < 2 D  (1.3) 

In  this way Dyson ' s  result will be generalized to cases where D r 1. 

2. F R A C T A L  LATT ICES 

The fractal lattices to be considered in this paper  can all be construc- 
ted in the following way: start with a finite generating set A comprising n 
points (with n >~ 2) in some Euclidean space; expand it by an arbi t rary fac- 
tor m (with m > 1); replace every point  of the expanded set by a replica of 
A to give a new set A';  expand again by a factor m, replace every point  of 
the new expanded set by a replica of A to give a new set A"; and so on. 
Figure 1 illustrates the first four steps in this procedure for the case where 
A consists of  the points 0 and 1 on the real line, with m = 3. Another  exam- 
ple, the Sierpinski carpet, is illustrated in Fig. 2. 

O 0  O 0  

O 0  O 0  O 0  O 0  

O 0  O 0  O 0  O 0  O 0  O 0  O 0  O 0  

Fig. 1. The first four steps in the construction of a fractal lattice. The first line shows the 
generating set A; the second line is A', the third is A", and the fourth is A C3). For this lattice 
we have n =2, m =3. 
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Fig. 2. The  sets A, A',  and  A" for a "Sierpinski  ca rpe t "  fractal  lattice. F o r  this lattice we have  

n = 8 ,  m = 3 .  
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To obtain a formula for the resulting fractal lattice (call it F), we 
represent the points comprised in A by vectors referred to one of these 
points as origin: 

A = {0, al ,  a2,-.-, a,, t} (n>~2) (2.1) 

where n is the number of points in A. Then A' consists of vectors of the 
form a + m a '  with a , a ' e A ;  A" consists of vectors of the form 
a q-ma'--}-mZa"; etc; and so we have, for any nonnegative integer q, 

A ( q ) =  { a + m a ' +  " "  q-mqa(q): a,  a ' , . . . ,  a ( q ) G A }  (2.2) 

The fractal lattice F can then be defined as 

F= ~J A (q) (2.3) 
q=O 

An equivalent formulation is that F consists of all convergent series of the 
form Zp>o m P a ( P )  with a (p) e A for all p, since with m > 1 the series con- 
verges if and only if a (p) = 0 for all sufficiently large p. Incidentally, this lat- 
ter way of defining F can also be used to define fractal sets, instead of frac- 
tal lattices, by taking m < 1 instead of m > 1, for example, if we take 
A = {0, 2/3 } and m = 1/3, then F is the Cantor set. 

Not  every object to which the term "fractal lattice" might be applied 
falls precisely within the above definition. An example is the lattice 
corresponding to the Sierpinski gasket. This lattice can be constructed by 
taking the points of A to be the vertices of an equilateral triangle, but using 
in place of (2.2) the formula 

A (q) = {a  q- a '  q- 2 a "  + '-- + 2 q 1 a(q): a ..... a (q) ~ A } 

In the present paper, however, only fractal lattices of the particular form 
(2.2) will be considered. 

To avoid unnecessary complications in the theory that follows, it is 
desirable to ensure that the points constructed by the above method are all 
distinct, and that none of them are very close together even when q is very 
large. This will be achieved here by requiring not just m > 1, but 

m >/1 + rmax/rmi n (2.4) 

where rma x is the diameter of the set A and rmi n is the least distance between 
pairs of points in A, measured using some suitable norm. This norm need 
not be the Euclidean one; for example, if we build up a plane square lattice 
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by taking m = 2 and A the four points at the corners of a square, then (2.4) 
is not satisfied for the Euclidean norm, but is satisfied for the norm 

Ilxi+yjll = max(lx[, lyl) 

with i and j unit vectors along the sides of the square. Incidentally, the 
value of m used in this example is the least possible, since (2.4) implies 
m~>:2. 

T h e o r e m  1. If (2.4) holds, then (a) every point x of F has a unique 
representation in the form 

q 
x = 2 m P x ( P )  (x  (0), x(1),..., x(q) ~ A ;  x(q) =/= 0)  (2.5) 

0 

and (b) the distance between any pair of points in F is at least r,~in. 

Proof. Let x be any point of F; then by (2.2) it can be represented in 
the form (2.5). Let y be a point whose representation is different, say 

r 
y=~~mPy(p) (y(O), y(1) ..... y(r) G A; y(r) # 0 ) 

0 

Then we have, for some nonnegative integer s not exceeding the greater of 
q and r, 

s 
x -  y= ~ mP(x~P)- y ~p) ) (x(') r y(')) 

o 

The norm of x - y  therefore satisfies 

][x - -  y]l >~ m~rmin - -  ( m  ~ l + m s - 2  + . . .  + m + l ) r m a  ~ 

m ' - - I  
.= mSF'min - -  I'ma x 

m - 1  

>/mSrmin  - ( m  s -  [)rmi n [by (2.4)] 

gmi n 

Hence (a) two points of F with different representations cannot coincide 
and (b) two distinct points of F are separated by at least rmi n. | 

3. THE D I M E N S I O N  OF A FRACTAL LATTICE 

To define the dimension of a fractal lattice F let RN(X ) denote, for each 
positive integer N and each x in F, the radius of the smallest closed ball, 



76 Penrose 

centered at the point x, that includes at least N points of F. Then, if 
R u ( x ) ~ c o n s t x N  lID for large N [in the sense that N 1/DRN(X ) has 
positive upper and lower bounds] ,  we shall say that D is the dimension of 
F. The following theorem gives the value of D and shows that these upper 
and lower bounds can be chosen independent of x. 

T h e o r e m  2. For  any fractal lattice F there exist positive constants 
K1 and K 2 such that 

KI~N-1/DRN(X)<,K 2 foral lxcFandforal lN>>.n 

where 

D = log n/log m (3.1) 

n being the number  of points in the generating set and m the magnification 
factor. 

Proof.l For  each positive integer q, define the positive quantity pq(X) 
by 

1 
p q ( X )  2 = nq+l ~ (y - x) 2 (3.2) 

Y 

where the sum goes over all the n q+l points y in A (q) and ( y - - x )  2 m e a n s  

the Euclidean scalar product  of y -  x with itself. 
Using the representation y = a + ma '  + ""  + mqa (q), we calculate 

1 
pq(X) 2 - n  q+l E ~, "'" Z ( a + m a ' +  . . .  + m q a  (q ) -x )  2 

aEA a ' ~ A  a(q) ~ A 

= [ ( l + m + " "  + r n q ) g l - - x ] Z + ( l + m Z + m 4 + " - + m Z q ) #  2 

where 

a~A 

1 
~ = -  T~ ( a - ~ l )  ~ 

n a ~ A  

> 0 since n ~> 2 

Noting, with the help of (2.5), that the modulus of the vector in square 
brackets is at most (1 + m +  ... +mq)r . . . .  and using also the fact that 
m >~ 2, we obtain 

mZq~t2 ~ p q ( X )  2 ~ (m q+ 1 rmax)2  -t- m 2q+ 1].~ 2 

1 Note added in proof: The proof given here for Theorem 2 is wrong. A corrected version of 
the theorem will be published separately. 
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It is therefore possible to find positive constants 21 and 22 such that 

21m q </)q(X) < ,~2 mq (3.3) 

for all x ~ F and all positive integers q. 
Now we relate this behavior of pq(X) to the behavior of RN(X ). For 

every N we have from (3.2) the Chebyshev-type inequality 

1 
pq(X)2/> n +l ( y -  x) 2 

y E A(q):(y -- x) 2 > RN(X) 2 

R N ( X ) 2  [ ' F / q + l  - -  N ]  

F/q+ 1 

since, by the definition of RN(x), the truncated sum has at most rt q+l  - -N  
terms. 

Giving N any value not exceeding n q, we find (since n > 1) 

pq(X) if N<~n q (3.4) 
RN(X)  ~ (1 - l/n) 1/2 

At the same time, since the sum in (3.2) contains n q+l terms, the definition 
of RN(x) implies that no term in that sum can exceed RN(X) 2 for any 
N ~  rt q+ 1. Consequently, (3.2) implies 

p q ( X ) 2 ~ R N ( X )  2 if N>~rl q+l 

Replacing q by q -  2 and rearranging, we find 

R N ( X ) > / p q _ 2 ( X  ) if N>~n q-1 and q~>2 (3.5) 

For every N>/n we may choose q >~ 2 so that 

n q - I  <~N<~n q 

which is equivalent to 

N 1/D <~ m q <~ m N  1/0 

with D given by (3.1). Combining this last result with (3.3), and then using 
(3.4) and (3.5), we find that 

,~2 mNI/D 
2 1 N I / D m - 2 < ~ R N ( X ) < ~ ( ~ 2  if N>~n 

This completes the proof of Theorem 2. II 
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4. T H E R M O D Y N A M I C  L IMIT  

To define a thermodynamic limit for an Ising ferromagnet on the frac- 
tal lattice F, consider the sequence A, A', .... A(q),... of finite subsets of F 
defined in Section 2. With each of these subsets A (q) we can associate an 
Ising model in which only the spins within A (q) interact; that is, its 
Hamiltonian, in the notation of (1.1), is HAcq). The correlation functions for 
the infinite lattice can then be defined as the limit of the correlation 
functions for the systems in this sequence; in particular, for the two-body 
function, we define 

(s(x) s(y))  = lira (s(x) s ( y ) )  (q) (4.1) 
q ~ o O  

where (" . ) (q)  means an average in the Ising model on A (q), with 
Hamiltonian 

- ~ s(x) s(y) J(x, y) (4.2) 
{x,y} ~ A(q l  

where J(x, y ) =  I x - y [ - ~ .  The existence of the limit in (4.1) is guaranteed 
by the argument of Griffiths, (~5) i.e., the fact that in proceeding along the 
sequence we never weaken any interaction, so that by the Griffiths 
inequality (~2) the bounded sequence ( s (x ) s (y ) )  (q) is monotonic non- 
decreasing in q at fixed x, y. It should be noted, however, that the 
correlation functions need not be translationally invariant. 

5. S P O N T A N E O U S  M A G N E T I Z A T I O N  A B S E N T  AT HIGH T E M -  
PERATURES 

Following Dyson, (11) we can divide the proof that the system has a 
phase transition into two parts: a proof that it has no spontaneous 
magnetization at high temperatures if ~ > D, and a proof that it does have 
spontaneous magnetization at low temperatures if ~ < 2D. The first part of 
the proof follows closely the method of Dyson, m) which starts from the 
inequality of Griffiths (14) for an Ising model in thermal equilibrium in zero 
magnetic field: 

(s(x) s(y))(q) 

~< tanh/~J(x, y) + E 
z ~ A(q l  
z ~ x , y  

(s(x) s(z)) (q) tanh flJ(z, y) (5.1) 

where/~ = 1/~T, with ~ Boltzmann's constant and T the temperature, and 
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J(x, y) = Ix - yl - ~  is the interaction between the spins s(x) and s(y) on the 
sites x and y. Since 

0 ~ ( S ( X )  S ( Z ) ~ ( q ) ~  ( S ( X )  S(Z) 

and J(z, y)~> 0, Eq. (5.1) implies 

(s(x) s(y) ) (q) 

~< tanh flJ(x, y) + Z (s(x) s(z)) tanh flJ(z, y) (5.2) 
z E F  

z~x ,y  

provided the series converges. Since tanh flJ<~ flJ, a sufficient condition for 
convergence of this series is convergence of the series ~,z~r,~y J(z, y), i.e., 
Z z ~ r , ~ y l z - y [ - ~ .  Using the notation of Section 3, we can write this last 
series as ~ RN(y) ~ dN; therefore, by the lower bound on RN(y) given in 
Theorem 2, this series converges if ~ > D and has an upper bound indepen- 
dent of y; call the least such upper bound U. Taking the limit q -~ ~ in 
(5.2) and then summing over all x in an arbitrary finite subset S of F, we 
find 

~, (s(x)s(y))<~flU+ ~ ~ (s(x)s(z))tanhfiJ(z,y) 
x E S  x~S  zE F,z ~ y 

~<flU+Sup ~ (s (x)s (z) ) f lU 
z~F  x~S  

Hence, at temperatures high enough to make flU < 1, we have 

~u 
Sup ~ (s(x)s(y))  ~< 1 -fi--------U 
yEF x~S  

It follows, since (s(x)s(y)) /> 0 by Griffiths' inequality, (12) that the infinite 
sum Zx~r (s(x)s(y))  converges for every y and hence that (s(x)s(y))  
approaches zero in the limit of large Ix -y l .  Thus we have proved the 
following result. 

Theo rem 3. If ~ >D, the Ising ferromagnet with r -~ interactions 
on a fractal lattice F of dimension D has no spontaneous magnetization at 
temperatures T such that 

~cT>U=Sup ~ ] z -y [ -~  
yEF z~F  

z ~ y  

822/45/1-2-6 
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6. D Y S O N ' S  H I E R A C H I C A L  M O D E L  

Our proof of spontaneous magnetization at low temperatures is based 
on a comparison with Dyson's hierarchical modelJ ~) This model is con- 
veniently defined in terms of a function of two integers d(i, j), defined as 
the position of the most significant place in which the binary represen- 
tations of i and j differ. That is, if 

i= ~ 2Pi ~p) and 
p~>0 

wi th  i ~), j (P )  G {0, 1 }, ( p  = 0, 1, 2,...), t h e n  

j =  ~ 2Pj <p) (6.1) 
p~>0 

i(P)= j (p) for all p >>-d(i, j) 

but (6.2) 

i (p) ~j(P) for p = d(i, j ) -  1 

[-In Dyson's notation (11) our d(i, j) would be called p(i+ 1, j +  1).] 
A hierarchical Ising model is one in which the interaction between the 

ith and the j t h  spins is a function of d(i, j) only. Dyson considered a 
sequence of finite hierarchical models M1, M2 ..... where the model M N 
comprises 2 x spins So, sl ..... s2~_ 1 in which the interaction between the ith 
and j t h  spins is 

N 
Z 21 2pbp (6.3) 

p = d(i.j) 

where b~, b2 .... are given positive constants. He showed that if 

bp=2 (2-~)p with 1 <7 < 2  (6.4) 

then there is a positive temperature T~ below which the system has a spon- 
taneous magnetization, in the sense that 

lim (s is j )>O if T <  T7 (6.5) 
li j l ~  

where (sisj) denotes the limit, as N ~  ~ ,  of the thermal average of sisj at 
temperature T in the finite hierarchical model M u. 

His proof also shows [Eq. (3.20) Ref. 11] that, for all i and j, 

(sisj) >1 m2(T) (6.6) 

where rnZ(T) is defined to be equal the left-hand side of (6.5). If follows, by 
Griffiths' inequality, ~2) that the lower bound (6.6) on (s~sj) holds for any 
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Ising model in which the interactions are at least as strong as the ones 
given in (6.3) and (6.4)--in particular, one in which the interactions are, 
regardless of the value of N, 

J,7 = ~ 2 ~ - 2 p 2 ( z - y ) p  ~- c~2 -Td(i'j) (6.7) 
p = d ( i , j )  

where 
c r = 2 / ( 1 - 2  ' )  (6.8) 

On rescaling the interactions and the temperature by a factor Jo/c~, where 
Jo is an arbitrary positive number, this result takes the following form: 

L e m m a  4. If the sites in an Ising ferromagnet can be numbered in 
such a way that the interaction J,7 between the ith and j t h  sites satisfies 

Jij>~ Jo2 7 d t i ' j )  

with 1 < 7 < 2, then the correlations satisfy 

(sis;) >~ m2(c, T/Jo) 

> 0  if T< TrJo/c r 

where d(i, j) is defined in (6.1) and (6.2), m 2 just after (6.6), cv in (6.8), and 
T~ in (6.5); note that T~Jo/c~ is positive. 

This lemma will allow us to derive a lower bound on the correlation 
between two arbitrary sites in a fractal lattice. 

7. A M O D I F I E D  FRACTAL LATTICE 

Since the model to which Lemma 4 applies is built up in blocks each 
containing a number of spins that is a power of 2, whereas in the fractal 
lattice F the number of spins in a block is a power of n that is not in 
general a power of 2, the lemma cannot be applied directly to F. However 
we can make it applicable by disconnecting some of the spins from F in a 
way that will now be described. 

For  reasons outlined in Section 1, we shall require c~ < 2D. This con- 
dition is equivalent, by (3.1), to 1~ log2 m < log  2 n. It is therefore possible to 
find positive integers s, t such that 

~ log2 m < s/t <_ log2 n (7.1) 

and, in addition, such that 

s~>2 (7.2) 
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Multiplying (7.1) by t and exponentiating to base 2, we obtain 

m ~''/2 < 2 s <~ n '  (7.3) 

When the fractal lattice F is built up by the process described in Section 2, 
the number of spins is multiplied at each step by n (which is the number of 
spins in the generating set A), and the magnification at each step is m. 
However, the same lattice can also be built up by using as generating set 
the set B = A  ( t -~)  obtained by t - 1  repetitions of the process, and as 
magnification factor the number m'. The set B, which contains n t sites, is 
defined according to (2.2) by 

B = A ( ' - l ) = { a + m a ' + . . . + m  ' la<' 1); a, a',...,a(' 1)~A} (7.4) 

and we then have [in analogy with (2.2) and (2.3)] 

F =  U {b + m t b  ' + m2tb " + . . .  + mptb(p): b, b',...,b (;) ~ B} 
p=O 

(7.5) 

Let u, v be any two sites in F; by (7.5) they can each be represented in the 
form analogous to (2.5) 

u =  ~ mtPu (p), v =  ~ m~Pv (p) 

p~>0 p~>0 

where u (p~ and v(P)EB for all p t> 0 and U (p) = u  0 for all sufficiently 
large p. To construct the Ising ferromagnet G to which Lemma 4 will be 
applied, let C (~ C (~), C (2~ .... be a family of subsets of B (not all of them will 
be different) chosen to satisfy the following conditions: 

(i) C (p) comprises 2 s distinct sites. 

(ii) C (p) includes 0, u (p), and v (p). 

Condition (i) can be satisfied since, by (7.3), 2S~<n ~ and B comprises n t 
sites; condition (ii) can be satisfied since 0, u (p), v (p) are in B and, by (7.2), 
s~>2. Now we define, in analogy with (2.3) and (2.2), 

G= U G (p) (7.6) 
p = 0  

where 

G (p) : {c  (~ -k- m t c  (1) q- �9 �9 �9 + mptc(p): 

c (0) E C (0), c (1) ~ C(1),. . . ,  c (p) E C (p) } (7.7) 
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This construction ensures that u and v are both members of G. Moreover, 
since G is a subset of F, it follows by Griffiths' inequality that 

(s(u) s(v)5~>~ (s(u) s(v))~ (7.8) 

where ( ' ' ' ) F  represents a thermal average on the fractal lattice F, as 
defined in Section 4, while ( . . . ) o  represents the corresponding quantity for 
the lattice G, i.e., the case where the summation in (4.2) is restricted to 
thc)se terms where {x, y} c G (q). 

8. C O M P A R I S O N  W I T H  A H IERARCHICAL  M O D E L  

To apply Lemma 4 to the Ising ferromagnet on G, we need to put the 
sites of G into one-to-one correspondence with the nonnegative integers. 
First we label the sites in each of the finite sets C (p). To the integer 0 we 
associate the site 0 (calling it also c(0 p)) and to the integers 1, 2,..., 2 " -  1 we 
associate the rest of the 2 ~ sites in C (p), in an arbitrary order, calling them 
c]P),..., c(2p p) 1. To find the site gi in G corresponding to any given integer i, 
let the representation of i in the scale of 2" be 

i=  ~ i(P)2 w with i (p)~{O,1 ..... 2 s - l }  (8.1) 
p>~0 

Then we define g~ to be 

gi = ~ cS~Plm ~p (8.2) 
p ) 0  

which belongs to G because of (706) and (7.7). Provided (2.4) holds, it 
follows from Theorem 1 that every point in G has a unique representation 
in the form (8.2), and hence that the correspondence between nonnegative 
integers i and sites gi in G is one-to-one. 

We can now relate the "hierarchical distance" d(i, j )  between any two 
nonnegative integers i , j  to the Euclidean distance between the 
corresponding sites gi, gj. Equation (8.2) implies 

q 

Igi-gfl ~< ~ [cfd, t-c)~l  m'~ 
p=O 

q 
<~ E Rmax mtp 

p = O  

= Rmax(mt(q + 1) __ l ) / (m t - -  1 ) ( 8 . 3 )  

where q is the largest value of p such that i(P) 7~j(P), and R m a  x is the 
diameter of the set B, of which every C (p) is a subset. 
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By the definition of q, we have i (q) 5~j (q), SO that when i and j are 
represented in the scale of 2 ~, the (q + 1)th-least significant digits in the two 
representations are different. So when i and j are represented in the scale of 
2, at least one pair of corresponding digits between the (sq+ 1)))th- and 
the s(q + 1)th-least significant digits (inclusive) are different, and it follows 
from the definition of d(i, j) [Eq. (6.2)] that 

d(i, j) >~ sq + 1 (8.4) 

Combining (8.3) with (8.4), we obtain, since m t -  1 > 1, 

Ig i -  gjl ~ Rmax mtmt[a(i'j)- 13/s 

= R~axm,2~a(ij)- 11~/~ (8.5) 

where 

which satisfies, by (7.1), 

7 = (t~/s) log2 m (8.6) 

7 < 2  (8.7) 

The interactions of an r -  ~ Ising ferromagnet on G therefore satisfy 

Ig~- gjl-~ ~> (Rmaxm t) - ~ 2~ 2-Td(~'J) (8.8) 

Equation (8.8) tells us that the interactions on the lattice G are stronger 
than those on a certain hierarchical model M of the type considered in 
Lemma4.  Hence, applying the Griffiths inequality (12) and then using 
Lemma 4 with Jo = (Rmax mr) ~2~, we obtain [since 7 < 2, by (8.7)] 

(s(gi) s(gj))~ >i (sisj)M 
2 ~ tc~ ~ m  (TC~Rmaxm /2 ) (8.9) 

where c~ is defined in (6.8). 
Now, since u and v both belong to G, we can choose i and j so that 

g i=  u and g j=  v; then (7.8) and (8.9) give 

(S(U) S(u ) F > m2( Tc7 Rmax m'~l 2~) 

This lower bound is independent of the choice of u and v within F, and is 
positive provided 

T <  Tr /c Rma• 
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where T~ is the positive temperature whose existence [subject to the con- 
dition (8.7)] was proved by Dyson (m [see Eq. (6.5) above]. So we have 
proved the following result. 

Theorem 5. If c~ < 2D, the Ising ferromagnet with r -~ interactions 
on a fractal lattice of dimension D satisfying the condition (2.4) has a spon- 
taneous magnetization at sufficiently low temperatures. 

Combining Theorems 3 and 5 gives our main result: 

Theorem 6. If D < ~ < 2D, the Ising ferromagnet with r -~ interac- 
tions on a fractal lattice of dimension D satisfying the condition (2.4) has a 
phase transition. 

9. D I S C U S S I O N  

One of the questions raised by the result proved here is what happens 
when c~ > 2D. The answer is that in this case the values of e and D alone 
are not sufficient to determine whether or not there is a phase transition. If 
D is an integer and the "fractal lattice" is simply the periodic lattice Z o, 
then there is no transition in the case c~ > 2D for D = 1, but comparison 
with the nearest neighbor Ising model (using Griffiths' inequalities) shows 
that a phase transition does occur for D i> 2. However, regardless of the 
value of D, it is easy to construct fractal lattices for which the condition 

> 2D is sufficient to guarantee that there is no spontaneous magnetization 
for any positive T, and hence, presumably, no phase transition for any 
positive T. This can be achieved by strengthening the condition (2.4) to 
m > 1 + Fmax//'min, a s  is shown and proved in Theorem 7 in the Appendix. 
Unlike the periodic lattices, however, these fractal lattices must be embed- 
ded in a space of dimension larger than D. 

One would also like to know more about the phase transition in the 
case D < :~ < 2D; for example, what are the critical exponents? For periodic 
lattJices, it was found by Fisher et al., (16) using the renormalization group 
approach, that if ct < 3D, the critical exponents have the "classical" values 
(q = 2 - a, v = 1/a, 7 = 1, where a = c~ - D), but if e > 3D, they do not (and 
if e > D + 2, they have the same values as for short-range foces). Similar 
results had been previously obtained analytically by Joyce (17) for the 
spherical model. It is possible that some of these results will also apply to 
the case of nonperiodic fractal lattices. 

In this paper only the Ising model has been considered, but similar 
results can also be obtained for the plane rotator model: the proofs are 
analogous, using the inequalities of Ginibre (18) to compare the various 
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models, the mean-field bound of Driessler et al. (19) to prove the absence of 
spontaneous magnetization at high temperatures, and some inequalities of 
Kunz and Pfister (1~ to prove the presence of spontaneous magnetization at 
low temperatures. The conclusion is that there is a phase transition for the 
plane rotator model with r -~ interactions on a fractal lattice of dimension 
D if D < e < 2D. This generalizes the result of Kunz and Pfister, who 
proved this same thing for the plane square lattice. 

A P P E N D I X  

Theorem 7. An Ising ferromamgnet with r -~ interactions on a 
fractal lattice of dimension D for which ~ > 2D and 

m > 1 + r~x/rmi ~ (A. 1 ) 

has zero spontaneous mgnetization at all positive temperatures. 

Proof. Let M denote the Ising ferromagnet to which the theorem 
refers, and for every positive integer q let M <q) denote the ferromagnet 
obtained from M by locking together all the spins in the subset A (q) defined 
in (2.2), and those in every translate of A (q) (a construction suggested by 
the work of Rogers and Thompson~2~ That is, if each site x in F is written 
in the form 

x = a + m q + l y  

with a e A (q) and y e F, then for each y all the spins with the same value of 
y are locked together. By the Griffiths inequality, ~12) the spontaneous 
magnetization of the model M (q) is at least as great as that of M at the 
same temperature: 

re(T) <~ m(q)( T) (A.2) 

In the model M (q) each block of n u+l spins behaves as one, and the 
interaction between the blocks y and y' is bounded above by 

(nq+ l) 2 r(y, y ' ) -~  (A.3) 

where 

r(y,y')= min la+mq+ly-b-mq+ly'[ 
a,b ~ A 

>~kl min I l a + m q + ~ y - b - m ~ + t y ' l [  (A.4) 
a,b 
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with kl a positive geometrical constant relating the Euclidean norm to the 
norm I['l] used in defining rma x and rmi n. From the definitions of A (q) and 
/'max we have 

m q+l 
Ha-b[] ~ ( l + m +  " "  +mq) rmax < r m a  x 

m --1  

and hence, from (A.4), 

r(y, y ' ) > k l  mq+11[Y-  Y'II I 1 

>/klk2  mq+ l I[Y- Y'JI 

where 

]"max 1 
(m-- 1)rly- y'll 

k2 = 1 -- rmax/(m - 1)rmi n 

which is positive, by (A.1). The model M (q) is therefore equivalent to an 
Ising model on F in which the interaction between sites y and y' is [see 
(A.3)] less than (n2)q+lr(y,  y') ~, which in turn is less than 

J*(Y, Y') = (n ~m ~)q+ 1(klk2)-~' Ily- y'll-= 

Therefore, by Griffiths' inequality, the spontaneous magnetization of M (q) 
is less than that for an Ising model M* on F with the above interaction, 
which in turn is the same as the spontaneous magnetization for the original 
Ising model M at temperature 

T 

(n2m - ~)q + l(k I k2) - c~ 

That is, m(q)( T) <~ m( T* ). 
However, if ~ > 2D, then n2m-~  < 1 and hence T* can be made (for 

any given T) as large as we please by making q large enough. In particular 
it can be made larger than the temperature above which Theorem 3 shows 
the spontaneous magnetization to be zero. So, whatever the value of T, we 
have: m(q~(T)=O for sufficiently large q, and it follows from (A.2) that 
m(T) = 0. II 
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